

Circular BlOeconomy TRANSFORMation for regions by enabling resource and governance networks

D2.1 Report on the framework for assessment and methodology

PROJECT ACRONYM: BIOTRANSFORM PROGRAMME: HORIZON Europe Grant Agreement: No 101081833 TYPE OF ACTION: HORIZON-CSA START DATE: 1 October 2022

DURATION: 30 months

Document Information

Issued by:	Luxembourg institute of science and technology
Issue date:	29/09/2023
Due date:	29/09/2023
Work package leader:	Luxembourg institute of science and technology
Dissemination level:	PUBLIC

Document History

Version	Date	Modifications made by
1.1	29/09/2023	Gitanjali Thakur
1.2	29/04/2024	Marta Macías Aragonés (CTA): Additions in Table 5 and in Table 10

Authors

First Name	Last Name	Beneficiary
Gitanjali	Thakur	LIST
Enrico	Benetto	LIST

In case you want any additional information, or you want to consult with the authors of this document, please send your inquiries to: chrysafi@qplan-intl.gr

Quality Reviewers

First Name	Last Name	Beneficiary
Kirsi	Kataja	VTT
Ruben	Guisson	VITO

Disclaimer

Funded by the European Union under GA no. 101081833. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or REA. Neither the European Union nor the granting authority can be held responsible for them.

© BIOTRANSFORM Consortium, 2022

Reproduction is authorised provided the source is acknowledged.

Contents

SUMMARY	. 4
1. INTRODUCTION	. 5
2. THREE EXISTING TOOLS	. 6
2.1 RESOURCE FLOW ANALYSIS TOOL – RFA (ALCN)	6
2.2 LOGISTICS MOOV TOOL – MOOV (VITO)	7
2.3 IMPACT ASSESSMENT TOOL – IAT (LIST)	. 8
2.4 BENCHMARKING OF THREE TOOLS	.9
3. STUDY REGIONS AND THEIR LIMITATIONS (RESULTS FROM WP1)	15
4. ASSESSMENT FRAMEWORK	18
4.1 DEFINING THE GOALS OF REGIONAL SUSTAINABILITY	19
4.2 DEFINING IMPROVEMENT ACTIONS	22
4.2.1 Using RFA	22
4.2.2 Using MooV	22
4.3 INVENTORY, EMISSION PROFILES AND ASSESSMENT	22
4.3.1 Simplified assessment	22
4.3.2 Complete assessment	24
4.4 REPORTING OF INSIGHTS	28
4.4.1 Using MooV	28
4.4.2 Using RFA	29
4.4.3 USING IA I	29
ANNEX 1	31
ANNEX 2	34
ANNEX 3	42
ANNEX 4: MOOV METHODOLOGY	46
ANNEX 5: CALCULATION OF CIRCULARITY INDICATORS	49
REFERENCES:	52

List of Tables

Table 1: Country, region, and the main bioeconomy topic for BIOTRANSFORM
Table 2: Description and comparison between the three tools based on their generic information, datarequirements, outcomes, and user interface.10
Table 3:Interviewee details from each region 15
Table 4: Barriers to sustainability and tools that can be used to address them. 20
Table 5: Regional biomass residue sources
Table 6: Macro level circular economy indicators (Geng et al., 2012) based on EASAC policy report 30 (2016) and its overlap with sustainability (social, environmental, and economic) indicators. The calculation formulation for each indicator is given in Table 11
Table 7: List of social, environmental, and economic indicators. 24
Table 8: List of various aspects and sustainability indicators 31
Table 9: Regional transition theme, regional target, input required
Table 10:Regional main drivers, desired policy incentives and identification of new value chains
Table 11:Calculation formulation for the circularity indicators 49

List of Figures

Figure 1: Purpose, functioning and output of RFA	. 7
Figure 2: Purpose functioning and outcomes of MooV	. 8
Figure 3: Purpose and outcome of IAT	. 9
Figure 4:Summarising the challenges faced by various regions, revealing common limits and barriers that are indicative of the broader situation of linear economies at the European Union (EU) level	18
Figure 5: Flowchart showing comprehensive approach consisting of four steps to assess the regional transition by using IAT, RFA and MooV	' 19
Figure 6:MooV's three-step methodology	28
Figure 7:Dashboard with MooV output	28

Summary

This report introduces BIOTRANSFORM's assessment package, essential for steering the shift towards a sustainable bio-based economy. This package comprises three synergistic tools: the Impact Assessment Tool (IAT by LIST), the Resource Flow Analysis Tool (RFA from ALCN), and the Logistics MOOV Tool (provided by VITO). By assessing regional sustainability goals aligned with regional challenges, the framework offers a comprehensive approach. The RFA and MOOV tools identify transition pathways, while the IAT delivers key performance indicators using sustainability and circularity metrics. These pathways are rigorously compared, revealing disparities between conventional linear (fossil-based) and emerging circular bio-based value chains in social, environmental, economic, and circular aspects. This valuable insight empowers policymakers and stakeholders to make informed decisions, guiding the holistic transition of the regional economy towards a circular bio-based model.

1. Introduction

In response to the climate crisis and the growing strain on natural resources, European Union (EU) policymakers are keen to expedite the transition of their economy from a linear (fossil-based) model to a circular bio-based economy with a commitment to address environmental challenges, reducing greenhouse gas emissions, and promoting circular bioeconomy. Current standards for measuring economic development and activity are in terms of Gross Domestic Product (GDP) (Marcus and Kane, 2007; McCalla and Smith, 2007, Ref). GDP as indicator but it has limitations when it comes to assessing the sustainability and overall well-being of an economy, especially in the context of circular bioeconomy (CBE) (Giannetti, B. F et al. (2015)). Circular bioeconomy models often aim to improve overall well-being, which may not be reflected in GDP growth alone as it measures economic output but does not directly measure the quality of life, well-being, or social equity within a society. In a linear, fossil-based economy, high GDP may be achieved by depleting finite resources quickly, which is unsustainable in the long term. In contrast, circular and bioeconomy models prioritize resource efficiency and sustainable resource management by emphasize the principles of reduction, reuse, and recycling of materials, while basing themselves on renewable raw materials. This can slow down GDP in the short term as less new production is needed, even though they are environmentally and economically beneficial in the long term. A circular-bioeconomy ambitions to minimize negative externalities associated with economic activity, such as pollution, habitat destruction, or climate change, but GDP does not reflect these improvements. To address these limitations, various alternative measures and indices have been proposed, such as the Genuine Progress Indicator (GPI), the Human Development Index (HDI), and environmental sustainability index (ESI) (Böhringer, C., & Jochem, P. E. (2007). These indicators attempt to provide a more holistic view of economic and social progress, accounting for factors beyond GDP at national level. These national-level indicators are not always adequate for a region which vary significantly in terms of their resources, economic activities, and sustainability challenges. Different regions may have distinct environmental, economic, and social characteristics, making it necessary to specify indicators that are tailored to reflect their unique context and challenges.

The current report focuses on a framework which aims to guide the holistic transition of the six-European regional industries of BIOTRANSFORM from linear (fossil based) to circular biobased economy. The case-study regions represent diverse industries and activities and differ in economic background and bioeconomy focus which the project aims to support. The six selected regions and their main bioeconomy topics are listed in Table 1.

Country	Region	Main bioeconomy topics
Austria	Northern Burgenland	Vineyards, vegetation & sludge from lake, agribusinesses
Czech Republic	Charles Spa Region	Hot springs & associated spa tourism, beverages & food production
Finland	Country level	Forestry
Germany	North Rhine-Westphalia	Chemical industry / biogenic side & residue streams
Greece	Western Macedonia	Decarbonisation of energy production, agriculture, mining, fur & leather
Spain	Andalusia	Tourism, retail, transportation underdeveloped industry, agriculture

Table 1	: Country,	region, a	and the mail	n bioeconomy	topic for	BIOTRANSF	ORM

An extensive set of indicators is proposed as a robust assessment package providing a more comprehensive and holistic view of economic, environmental, and social progress. The aim of the assessment package is twofold. First to provide tools and indicators to design alternative, circular and biobased systems to replace the existing, linear (fossil based) ones. Second, to provide holistic indicators to assess the sustainability of the different alternative systems and provide insights on how to optimize them.

In the context of assessing the transition in the six-pilot regions, the assessment package will employ three established evaluation tools and a variety of indicators, offering a holistic perspective to policymakers. These indicators encompass resource efficiency, environmental impact, social wellbeing, and economic sustainability, aligning with the principles of bioeconomy and circular economy models. Such a multi-dimensional assessment approach better captures the overall progress and development in the region, reflecting the complex interplay of economic, social, and environmental factors allowing policymakers to make informed decisions by considering a range of factors beyond GDP.

The report is structured into three distinct chapters, each serving a specific purpose:

Chapter 2: This section lays the foundation for the report by introducing the tools and their subsequent benchmarking that will be central to the assessment method.

Chapter 3: This section delves into the regional context, offering insights into the challenges and limitations experienced in the specific regions.

Chapter 4: This pivotal chapter outlines the methodology framework that will be employed, offering a comprehensive list of indicators. It details how these indicators will be used to assess and guide the transition from linear and fossil-based systems to circular bio-based economies and also specifies the context in which the tools and methodologies will be applied.

2. Three existing tools

2.1 Resource Flow Analysis Tool – RFA (ALCN)

The Resource Flow Analysis (RFA) Tool focuses on assessing the flow of resources within the circular bio-based economy using a Sankey diagram. It is a visual representation that effectively showcases the movement of resources, energy, costs, or other measurable data. By utilizing distinct bands or streams, it visually illustrates the intricate inflows and outflows of data. This graphical tool proves valuable in making complex data flows more understandable and revealing patterns and inefficiencies, enabling a comprehensive understanding of the circularity of the system. It can highlight areas where resource efficiency can be improved, and waste can be minimized, contributing to the overall sustainability of the transition. The Sankey diagram is also used to define a scenario based on the resources available and describe which conversion plants can be used to convert this biomass

into useful products. From this the feed can be estimated and the impact on indicators can be estimated. These diagrams play a crucial role in assessing the circular bioeconomy by:

1. Illustrating the movement of energy and resources it also helps in portraying the residual biomass stream, which allows us to track the movement of unused organic materials

2. Emerging as powerful instruments for visually mapping the circular economy concept. They effectively demonstrate the cyclical journey of materials, underscoring their role in enhancing sustainability through effective recycling and reuse.

3. Helping us visualize the environmental consequences of waste management processes. This sheds light on the potential for waste reduction through resource recovery strategies.

Figure 1: Purpose, functioning and output of RFA

2.2 Logistics MooV Tool – MooV (VITO)

MooV (https://MooV.vito.be) is a supply chain optimization service dedicated to optimizing the design of supply chains and supporting the rethinking of supply chain configurations independently and scientifically. MooV focuses on strategic and tactical decisions, such as determining the location of new activities, integrating new activities and products in chains, the right choice of transport fleet, etc. Within the project, the MooV tool focuses on the logistics and transportation aspects of the transition to a circular bio-based economy. MooV assesses the movement of materials, products, and information within the circular bio-based economy. It helps identify opportunities for optimizing transportation logistics, reducing emissions associated with logistics transport, and enhancing the overall efficiency of the transition process by considering all key decision parameters based on:

- Logistics & transport: location, multi-modality, hubs, peak & off-peak travel times
- Storage and processing: product flows, capacities, locations, process step costs
- Quality aspects: grades and standards, product specifications, process step
- Time effects: variations in time of supply & demand

The tool then finds the optimal supply chain network solution matching the set objective (e.g., cost minimization or maximum fleet emission reduction) and considering regional-specific constraints (e.g. production hotspots, low emission zones, loading capacities). As such, MooV provides decision support in transforming from fossil-based supply chains to circular bio-based ones. The ways to

change the existing supply chain into a new one. MooV has been applied to be used by various sectors for turning their supply chain more efficient, which includes Agriculture, forestry, (green) Chemical chemicals and pharma, Construction & Building, Food and feed, construction, Forestry, Governmental authorities & services and Logistics & Transport logistics and transport. The client portfolio consists of private as well as public and non-governmental bodies. A pictorial representation of different activities and the decision criteria are shown in the figure below.

MooV combines linear programming and advanced analytics to address diverse strategic and tactical supply chain questions. It is an intelligent merger of in-house developed Python scripts combined with professional software packages such as GUROBI Optimizer, ESRI ArcGIS and Tableau.

Figure 2: Purpose functioning and outcomes of MooV

2.3 Impact Assessment Tool – IAT (LIST)

The transition from linear fossil fuel-based system involves shifting from a model that relies heavily on finite fossil fuels and generates environmental degradation to one that is more sustainable, regenerative, and aligned with ecological boundaries. The impact assessment tool consists in a list of sustainability assessment indicators framed within the "Doughnut Economics" model of planetary and social boundaries (Raworth 2017). The indicators represent environmental, economic and social hotspots (e.g., renewable energy adoption targets, social equity measures) which must be assessed and monitored while imposing the objective of reducing the environmental burden in the six pilot regions. The framework can guide policymakers in designing and implementing policies that promote circularity and bio-based solutions.

The starting point is to quantify the GHG impact reduction target, compared to the current situation, to be achieved through a given transition scenarios towards a circular and sustainable bioeconomy. By identifying the leading sectors and activities which will be impacted by the transition scenarios and thereby will contribute to the targeted impact reduction, one or more prospective scenario(s) (relative to the status quo situation) are defined. The scenarios are associated to transition pathways that shall be crafted qualitatively and quantitatively, by modifying the main drivers of the status quo situation according to the prospective assumptions. For each of the prospective scenario, the resource and energy flows are quantified, and the associated environmental, economic and social aspects are assessed, based on the set of indicators.

Figure 3: Purpose and outcome of IAT

2.4 Benchmarking of three tools

BIOTRANSFORM focuses on advancing the bioeconomy and circularity in six diverse European regions with varying industries and financial backgrounds. A critical aspect of the project involves benchmarking resource flow analysis (RFA), logistics optimization, and impact assessment tools to determine their suitability for specific applications within these regions. This benchmarking process aims to establish a comprehensive assessment framework by evaluating the tools against common criteria, considering the unique characteristics of each tool and region. Ultimately, the goal is to assess the tools' capabilities, effectiveness, and applicability in promoting sustainability during the transition from a linear (fossil based) economy to a circular bio-based economy. The information used for the benchmarking are shown in Table 2.

Table 2: Description and comparison between the three tools based on their generic information, data requirements, outcomes, and user interface.

Generic information	Resource Flow Analysis [ALCN]	Impact Assessment tool [LIST]	Logistics MooV tool [VITO]
Purpose	A resource flow diagram illustrates the inflow and outflow of resources within a system	The evaluation of environmental and socio-economic impacts within regions, for the purpose of informing policy decision-making, is conducted through the analysis of various consumption scenarios	Determines the optimal supply chain configuration, considering factors such as cost, geographic location, quality, quantity, and planning.
Type of tool (software (coding language) / model / Excel-based tool / other)	An Excel-based tool enriched with Python code for data visualization.	A methodological approach integrated with an Excel-based tool	The model is python coded (linear program). Supporting software a.o. ArcGIS (geographic context), Gurobi (solver), Excel (input-output files)
For software: indicate if open source	The open-source Python code is available on GitHub, providing the necessary knowledge and resources to utilize it seamlessly in conjunction with Aalchemia- Nova	n.a. (not a software yet)	No (supporting software is under license)
Methodology followed / Modelling approach	Resources are characterized by their inflow and outflow, with arrows denoting the directional flows, while nodes symbolize the processes involved.	Life Cycle Assessment (LCA) emphasizes a comprehensive evaluation of environmental factors, enriched by the incorporation of socio-economic criteria. This holistic framework is firmly rooted within the 'Doughnut Economics' model, which emphasizes the recognition and management of planetary and social boundaries	Focuses on determining the optimal locations for facilities, such as warehouses, distribution centers, or production plants, while considering capacity constraints
Developed in house	Yes	Yes	Yes

The tool is used internally in your institute, or is it open to external users/clients? Or both?	The tool is employed for internal purposes	For internal utilization, as a user interface has not been developed yet	The tool is offered as a service to maximally unburden clients and to reduce implementation/use complexity at the client's end.
Licensing scheme	The tool was initially developed to serve the needs of Aalchemia- Nova. While it is openly accessible, the repository of knowledge primarily resides within the institute	No specific licensing scheme is in place, and distribution to external parties is not currently facilitated	None (offered as a service)

Foreground Data required	Resource Flow Analysis [ALCN]	Impact Assessment tool [LIST]	Logistics MooV tool [VITO]
Quantitative or Qualitative	To articulate this expression effectively, a comprehensive understanding of both qualitative insights into processes and quantitative data pertaining to the magnitude of arrows is necessary	Both qualitative and quantitative aspects	Quantitative
Type of data (e.g. bill of material / bill of energy / process data / process description / location of stakeholders along supply chain /)	Every process scheme can be modelled with this tool. It can show energy, nutrients, water, biomasses, carbon or whatever else one wants to show as mass flow scheme	Market data, consumption data, bill of mass, bill of energy	 5 different types of data: 1) Cost data: on transport and activities in the supply chain 2) Location data: GIS coordinates of the available supply chain locations. 3) Quantity data: mass-flow between different activities in the supply chain 4) Quality data: to differ between material types, quality grades 5) Planning/time data: to reflect offer/de
Sources of	Quantities of resources = arrows,	National/ Regional/Sectorial statistics &	Combination of customer-provided and
Type of data	Numeric	Numeric	Numeric

GA 101081833

Sources of	Knowledge on inputs and outputs	EXIOBASE (Stadler, K., et al.(2023))	Case dependent.
data:	necessary		
Background			
database(s)			
used			

Quantitative / Both Both - some indicators are qualitative (life cycle based), some are qualitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative (e.g. socio-cultural) in case of lack of inputs for quantitative assessment of circular bio-based systems and comparison with linear (fossi based) systems: Stat dard KPI's are: released Environmental: GHG emissions (production-based, consumption-based, biogenic carbon); Marine and freshwater eutrophication (kg N, kg P); Blue water withdrawal (fresh surface water used for human activities; Air pollution (combine nitrogen oxides, sulphur oxides, particulate matter emissions (2.5 µm) into disability-adjusted life years) However other KPI's can be customised depending on the client's request. Waterial use and controlarity (tons of material, assess circularity of materials qualitatively); Land use, land use chan	Outcomes / type of results	Resource Flow Analysis [ALCN]	Impact Assessment tool [LIST]	Logistics MooV tool [VITO]
List of indicators / efficiencies, side streams Set of indicators relevant to the assessment of circular bio-based systems and comparison with linear (fossil based) systems: released GHG emissions (production-based, consumption-based, biogenic carbon); Marine and freshwater eutrophication (kg N, kg P); Blue water withdrawal (fresh surface water used for human activities); Air pollution (combine nitrogen oxides, sulphur oxides, particulate matter emissions (2.5 µm) into disability-adjusted life years) Material use and circularity (tons of material, assess circularity of materials qualitatively); Land use, land use change (carbon sequestration potential); Biodiversity (using case-specific metrics, such as share of organic agriculture) Social: Job loss and creation; Wages; Training needs; Resource efficiency; Conversion rates and costs of equipment; Sizing and scaling; Influence on trades,	Quantitative / Qualitative	Both	Both - some indicators are quantitative (life cycle based), some are qualitative (e.g. socio-cultural) in case of lack of inputs for quantitative assessment.	Quantitative
logistics, infrastructure and related costs; Social and environmental costs	List of indicators / criteria released	Masses of resources, conversion efficiencies, side streams	Set of indicators relevant to the assessment of circular bio-based systems and comparison with linear (fossil based) systems: Environmental: GHG emissions (production-based, consumption- based, biogenic carbon); Marine and freshwater eutrophication (kg N, kg P); Blue water withdrawal (fresh surface water used for human activities); Air pollution (combine nitrogen oxides, sulphur oxides, particulate matter emissions (2.5 µm) into disability-adjusted life years) Material use and circularity (tons of material, assess circularity of materials qualitatively); Land use, land use change (carbon sequestration potential); Biodiversity (using case-specific metrics, such as share of organic agriculture) Social: Job loss and creation; Wages; Training needs; Resource efficiency; Conversion rates and costs of equipment; Sizing and scaling; Influence on trades, logistics, infrastructure and related costs; Social and environmental costs	Standard KPI's are: cost (€), mileage (km), CO2- emissions (ton), vehicle movements, vehicle loading rate and the location of the activities. However other KPI's can be customised depending on the client's request.

		Life satisfaction literature providing variables like employment, income, work-life balance, housing, health, education, governance, environment, security, self-reported life satisfaction	
Assessment / Evaluation method	Often numbers rely on assumptions or literature values, evaluation should compare with real regional data (once this is measured)	Life Cycle Impact assessment (Environmental indicators), combined with statistics for the socio- economic indicators.	Impact assessment – comparing different supply scenarios – based on the KPI's

User interface	Resource Flow Analysis [ALCN]	Impact Assessment tool [LIST]	Logistics MooV tool [VITO]
Existing for entry data (yes/no)	Yes, excel data file	So far the Excel data file is for expert in sustainability assessment. The tool could be replicated in Python with the addition of a user interface.	Yes, excel data file template
Possibility to define several scenarios / Sensitivity Analysis -	Yes, either time rows or scenarios are generated	Yes	Yes
Existing for results visualisation	Yes, the Python code directly shows the flow diagram, where the nodes can be freely moved around to possibly best fit a visually appealing graphic	Not yet - Graphs are hand made	Dashboard (on demand) visualising maps, graphs, tables (customised to client's need)
Type of visualisation	Sankey diagram	Waterfall chart showing gradual reductions in GHG emissions over time Doughnut graphic for the region / country of concern	Maps, graphs, tables

Support to	With any changes of underlying excel	Yes	Yes – MooV is offered as a service.
interpretation	or adding of a scenario, the Python		An experienced MooV-team guides
: contribution	code can be run again to immediately		clients through the results to better
analysis,	show an updated version. Possibly		understand and organize their chain.
sensitivity	each scenario can apply a different		5
analysis,	set of solutions, which can also be		
multicriteria	assessed through the multi-criteria		
assessment	assessment		

3. Study regions and their limitations (results from WP1)

This section presents a summary for each case-study region in the WP1 and discusses the limitations associated with the existing linear and fossil-based economies. The analysis is based on literature and insights from interviews with relevant policymakers and stakeholders, exploring opportunities for utilizing renewable biological resources, fostering innovation in bio-based industries, and developing policies to promote a more circular and sustainable economic model. By identifying these common limits and issues, the study aims to shed light on broader challenges pertinent to the individual regions and resonate at the European Union (EU) level. The various stakeholder interviewed to assess the regional sustainability barriers, especially in view of the sectors in scope of the BIOTRANSFORM project as show in Table 3.

Region	Interviewee details
Charles Spa	Regional officer, director of business development agency Member of regional research and development Representative of small regional business Policy makers and relevant stakeholders (exclusive details not found)
Austria, Burgenland	Chairwoman of an association (NGO) Professor of Innovation and Sustainability (Research institution) Model region manager for a KLEM region (Other) Regional manager for a KLAR region (Other) Specialist advisor in the regional administration of the state of Burgen- land (Political decision maker)
Andalusia, Spain	Research organisation Policymakers Public administration Environmental and forest administration
Finland	Policy maker (municipal level) Policy maker in ministry Circular economy and environment manager Ecosystem leader in public organisation
Germany	Experts/associations in waste management, Food processing start-up support, Policymaker
Greece	Policymaker in regional level Policymaker in municipal level related to the geotechnical field. Policymaker in regional level related to rural development. Policymaker /project officer at a local public authority

1. Burgenland and Northern Burgenland Region, Austria:

Economic Growth is characterized by commuting. A large portion of the population still commutes to Vienna and surrounding areas for employment suggesting external job markets and larger industries in the region rely on fossil fuels.

Environmental Limits: main hotspots include CO₂ emissions, nutrient loading from agriculture, habitat loss, impacts on biodiversity, and water resource challenges. Climate change's effect on wine production and soil degradation from agricultural activities are also highlighted.

Economic Limits: The availability and prices of raw materials due to dependency on imports. However, there's also a growing demand for eco-friendly products and services.

Social Limits: An influx of population strains from the local ecosystem due to increased resource demands, while at the same time, younger and more skilled individuals are leaving the region. Lack of awareness, creativity, openness, and innovation.

2.Charles Spa Region:

The main economic activities are centred around traditional crafts like glass and porcelain manufacture, textiles, building materials, and musical instruments, which have been losing importance due to high energy demands, raw material needs, and workforce requirements. Efforts have been made to transform key companies to compete globally, with foreign investment playing a role but only a few have successfully adapted to new markets due to the following challenges:

Environmental Limits: The region faces environmental challenges, including pollution of watercourses critical for the spa industry, ecological burdens of brownfields, air pollution from heating, and solid fuel usage, and soil and forestry pollution.

Economic Limits: Economic constraints include a dependency on imported raw materials and reliance on fossil fuels for energy. The region's industries also need more specialized personnel, making adaptation to market changes difficult. A lack of an environment for start-ups and a low innovation culture.

Social limits: Lack of skilled individuals due to migration to other regions for employment and a mismatch in education offerings. Low social responsibility by companies and citizens.

3.Finland:

The Finland forestry sector contributes by 15 per cent to the world's paper and paperboard exports. It plays an essential role in Finland's commitment to become climate-neutral by 2050 (European Green Deal) by increasing biomass extraction while minimizing waste, optimizing resource use, and creating value from by-products and waste streams.

Environmental Limits: The pulp and paper industry is responsible for substantial nutrient discharge. Biodiversity loss is observed from forestry activities, and eutrophication from phosphorus and nitrogen used in forestry.

Economic Limits: Fluctuations in energy prices, large number of forest owners makes it difficult to ensure a steady wood supply for the industry. Lack of recycled fibre as most of the fibre-based products are exported and are not returned to Finland for recycling.

Social Limits: Lack of skilled professionals in rural areas, Lack of funding and other incentives to create circular models, considering forests of human well-being needs.

4.North Rhine-Westphalia (NRW) Region – Germany

NRW has a robust industrial sector, with the chemical industry significantly contributing to its economic power. The chemical sector heavily relies on fossil resources, particularly petrochemical

raw materials and is an energy-intensive industry. Its output is essential for a wide range of other industrial sectors in Germany and other countries.

Environmental Limits: Degradation of ground and surface waters due to lignite mining, reduction in biodiversity, high CHG emissions, and use of fossil carbon raw materials.

Economic Limits: Dependence on the import of raw materials (fossil and renewable), high electricity cost for the chemical industry, and environmental regulations that will require changes in the operations of the chemical industry.

Social Limits: High interest of consumers in ecologically produced food and ingredients, and investment to companies perceived as sustainable grows. Citizens aim for a greener and more sustainable lifestyle.

5. Region of Western Macedonia – Greece

Western Macedonia consistently experiences high unemployment rates, especially among youth, and has one of Greece's lowest per capita GDPs. Small companies, traditional industries, and low competitiveness characterize the local economy. De-industrialization and the migration of labourintensive industries to neighbouring low-cost countries have further weakened the economy. The region's power stations are scheduled to shut down by 2028 due to the limitations and negative impacts of the current financial system, particularly in the lignite industry.

Environmental Limits: Lignite extraction process causes loss of biodiversity, contamination of groundwater by chemicals, land degradation, dust, noise and water pollution, air pollution, soil and water acidification.

Economic Limits: Low innovation performance, import of raw materials (smaller local producers), stopping lignite mining.

Social limits: Loss of jobs due to stopping lignite mining, elderly population with a low level of education, and lack of advanced and up-do-date skills.

6. Andalusia Spain:

Andalusia significantly contributes to Spain's national GDP and economy. However, the use of fossil resources, primarily for energy purposes, negatively impacts the regional environment. The Government of Andalusia has recognized the need for an energy transition due to the limits and impacts of the linear economy.

Environmental Limits: Ecological agriculture, tourism, construction, loss of beaches and biodiversity, air pollution from transport and retail business, and CHG emission from energy production and consumption

Economic Limits: Dependence on raw materials and imports - main imported category is crude petroleum oils. Increased prices of imported raw materials (oil), and price of water needed for irrigation in the agriculture sector.

Social limits: Increased population in the region, citizen choosing to be more environmentally responsible and putting pressure on the industries for eco-friendly products.

The challenges faced by the six regions are summarized in Figure 4. These highlights are then considered in the definition and deployment of the assessment framework in the next chapter.

 Environmental Impacts on biodiversity Contamination/overuse of water resources Air and soil pollution Climate change 	 Economic Dependence on imported raw materials Energy prices Supply and price instability caused by geopolitical issues, wars or other sudden shocks Heavily interlinked material use and GDP
 Migration of skilled people from rural to urban regions, away from former fossil- based industrial regions Lack of specific transition expertise Shift of citizens towards more eco-friendly products and practices 	 Barriers to achieve sustainability goals Lack of bringing innovation and new technology to market/industrial scale Hesitation in adopting new technologies, fear of change Limited funding opportunities Difficulties with existing legislative and regulatory framework

Figure 4:Summarising the challenges faced by various regions, revealing common limits and barriers that are indicative of the broader situation of linear economies at the European Union (EU) level.

4. Assessment framework

This chapter outlines a structured framework for addressing sustainability challenges in the six regional economies, which is depicted in Figure 5. First step is the setting of sustainability goals, based on the regional challenges previously identified for each region. This revolves around two key aspects: reducing greenhouse gas (GHG) emissions and advancing the circular bioeconomy in the regional industrial sector. In a second step, the improvement actions to reach the goals are identified through the optimization of supply chains and the enhancement of biomass circularity using the RFA and MooV tools. The data required for the tools will be provided by the industrial partners. In a third step, the assessment of the improvement actions is performed. Two approaches can be used: 1) a simplified one, where technical and economic data on the improvement actions are collected to calculate the circularity indicators listed in Table 6, considered as proxy of environmental and socioeconomic impacts; 2) a detailed assessment, where a comprehensive inventory for each activity and material flows characterizing the improvement actions is performed, which includes quantitative data for all inputs and outputs at each life cycle stage of the actions. This means looking at all stages, from raw material extraction, production, transportation, use, and recycling to then calculate the environmental, social, and economic impacts listed in Table 4. In the final step, data and findings are visualized, using Sankey diagrams illustrating resource and energy flows for various scenarios, bar plots displaying effect of supply chain optimization on the GHG emissions, a waterfall chart demonstrating gradual reductions in GHG emissions over time, and a Doughnut graphic portraying regional target, ceiling values and constraints.

Figure 5: Flowchart showing comprehensive approach consisting of four steps to assess the regional transition by using IAT, RFA and MooV

4.1 Defining the goals of regional sustainability

By identifying regional barriers to sustainability in terms of their geographical characteristics, resources available, and challenges to bioeconomy and circularity (discussed in Chapter 2) provides a deep understanding of the specific issues and constraints in each region. These barriers are categorized into environmental impacts, economic dependencies, social shifts, and regulatory hurdles as shown in Table 4. This step provides a comprehensive understanding of the challenges at hand and suggests which assessment should be done (simplified or detailed). We have aligned the specific regional challenges with the appropriate tools as shown in Annex 2 with required input and regional sustainability targets. Results demonstrate how the three tools will be effectively used to address and evaluate the identified barriers to sustainability.

Study Regions	Barriers to sustainablity/ Bio-economy			
	Socio-economic	Technical	Legal/Administrative	Environmental
Andalusia, Spain	Insufficient financial resources	Supply of raw materials, High generation of waste in manufacturing, Inadequate waste management	Poor inter- administrative coordination, regulatory frameworks related to tourism, bureaucratic obstacles, lack of political interest	Regional orography, Impact on biodiversity due to rise in sea level
Burgenland, Austria	Competition for land use, Highest number of cars per household in Austria, Loss of workers and retraining, Lack of well-developed public transportation	Limited research	Lack of enforcing laws, Energy price	Increasing water requirements for wineyards, drying up of lake Neusiedl due to surface sealing revitalization of fallowland excessive use of petrochemical fertilizers has led to contamination of ground water with high level of nitrates, animal farms

Table 4: Barriers to sustainability and tools that can be used to address them.

Charles Spa region	Less educated people, Distrust on circular economy	Limited research and technological innovation, Poor transport not connecting supply and customer chain	Need for legislative framework that might not be conducive to sustainable practices, small investment in new technology	
Finland	Need for funding and support to create circular models for commercializing new concepts and technologies.	Shortage of wood	Environmental permits, EU regulations, Sustainable forest management	Decreasing harvested forest area, regeneration of forestry, environmental impacts on water bodies, Regulation on nature conservation and land use
NRW Germany	Lack of skilled workforce	Conversion complexities in the chemical industry	Low investment, regulatory framework issues	
Region of Western Macedonia- Greece	Reduction in primary sector employment	Lack of technical knowledge, Lack of solid supply chains between biomass providers, transporters and end users, Lack of control mechanisms	Lack of public and private financing resources and limited infrastructure	

4.2 Defining improvement actions

To define the ways to improve the sustainability of the study regions, the two existing tools will be used.

4.2.1 Using RFA

The Sankey obtained from the RFA about the energy and resource flows in the region is instrumental in guiding improvement actions for a sustainable regional transition as it provides a clear picture of resources being used and wasted. The diagrams can highlight opportunities for waste reduction and recycling. This information can be used to integrate biobased resources into the existing value chains. Continuously updating and analyzing Sankey diagrams will also allow for the monitoring of progress in terms of resource and energy efficiency during the transition.

4.2.2 Using MooV

MooV will analyze the current supply chain configurations in the region and will identify areas where resources are underutilized or where inefficiencies exist. For instance, if storage facilities or distribution centers are not optimally located, this could lead to unnecessary resource consumption. MooV can simulate the effects of changes in product demand on the supply chain which will help to plan for fluctuations in demand and adjust the supply chain accordingly. Based on the demand patterns the capacity of storage facilities will be optimized. This optimization will have an impact on the existing use of resources. The details of MooV methodology followed is shown in Annex 4.

4.3 Inventory, emission profiles and assessment

The first phase will focus on circularity indicators, as presented in Table 5. This approach will enable to gauge how much the activities align with circular economy principles, emphasizing resource efficiency and reduced waste. In the second phase, we will conduct a comprehensive analysis using a detailed list of sustainability indicators. This approach ensures a thorough examination of environmental, economic, and social factors, as illustrated in Table 6.

4.3.1 Simplified assessment

Biomass residues offers a transformative opportunity for regional economies to transition towards a circular bioeconomy model by repurposing bio-waste as a replacement for virgin materials, such as by removing chemicals using organic feedstocks. This way a profound shift towards sustainability and circularity can be achieved, reducing dependence on finite fossil resources, and mitigating environmental impacts. The conversion of biomass residues into organic feedstocks promotes resource efficiency, minimizes waste, and fosters a closed-loop system where materials are continuously reused and recycled. This shift may also stimulate economic growth by generating new avenues for bio-based industries, ultimately contributing to a more resilient and environmentally responsible regional economy. The below table provides the regional biomass residue (obtained from WP1) sources that can be focused for the regional transition.

Region	Biomass residue sources
Northern Burgenland – Austria	-Municipal waste -Lake: reed & sludge -Agriculture
Charles Spa Region – Czech Republic	-Agriculture & Forestry, Tourism
Finland	-Forestry
North Rhine-Westphalia – Germany	 Agricultural, agri-food/feed and forestry sector Municipal waste Industrial waste
Western Macedonia – Greece	-Fur and leather -Municipal waste biomass -Forestry -Agriculture
Andalusia – Spain	-Agriculture waste -Industrial waste -Energy crops -Urban waste

Table 5: Regional biomass residue sources

By conducting a thorough inventory of available biomass residue sources in the region and analysing the composition and properties of the biomass residue the circularity potential of biomass residue can be assessed using four categories as shown in Table 6. The circularity indicator then can be related to the social, economic, and environmental impacts.

Table 6: Macro level circular economy indicators (Geng et al., 2012) based on EASAC policy report 30 (2016) and its overlap with sustainability (social, environmental, and economic) indicators. The calculation formulation for each indicator is given in Table 11

	Indicator			
Category			Social	Eco
Resource	Output of main mineral resource	\checkmark		\checkmark
output rate	Output of energy	\checkmark		\checkmark
	Energy consumption per unit of GDP		✓	✓
	Energy consumption per added industrial value		✓	✓
	Energy consumption per unit of product in key industrial		✓	✓
Resource	sectors			
consumptio	Water withdrawal per unit of GDP	\checkmark	\checkmark	✓
n rate	Water withdrawal per added industrial value	~	✓	 ✓
	Water consumption per unit product in key industrial	✓	✓	✓
	sectors			
	Coefficient of irrigation water utilization	\checkmark		
Integrated resource utilization rate	Recycling rate of industrial solid waste	✓		✓
	Industrial water reuse ratio	~		✓
	Recycling rate of reclaimed municipal wastewater	\checkmark		✓
	Safe treatment rate of domestic solid wastes	✓	✓	✓

	Recycling rate of iron scrap		✓	✓
	Recycling rate of nonferrous metal	✓	~	~
	Recycling rate of wastepaper	✓	~	~
	Recycling rate of plastic	✓	~	✓
	Recycling rate of rubber	✓	✓	✓
Waste	Total amount of industrial solid waste for final disposal	✓		✓
disposal	Total amount of industrial wastewater discharge	✓		
and	Total amount of sulphur dioxide emissions	✓		
emissions	Total amount of COD discharge	✓		

4.3.2 **Detailed assessment**

Data on each activity in the considered value chains regarding resource use and material use, along with the data on each stage of the emissions, will be estimated using EXIOBASE and ecoinvent (Stadler, K., iet al.(2023), Wernet, G et al.(2016)) These stages typically include raw material extraction and processing, manufacturing and production, transportation and distribution, use and operation, and End-of-life (disposal, recycling, or waste management). The environmental indicators quantify the environmental impacts, the economic indicators will assess the financial aspects of the transition, and the social and cultural dimensions will be evaluated using social indicators as shown in Table 5. These helps quantify the multifaceted aspects of sustainability, providing a holistic view of the transition's impacts and ensuring that it aligns with the goals of environmental preservation, economic development, and social well-being. It also provides a way to track and evaluate whether the desired direction is at the expected pace required for the transition. The primary list of environmental indicators based on the ecological footprint method of the European Commission (Manfredi, S et al. (2012)) is given in Table 5. The social and economic indicators are chosen based on the common economic and social challenges in Figure 4. Additionally, a detailed list of indicators obtained from the literature review is given in Annex 1

Proposed EF impact category	Unit (environmental impact category indicator)	Source	Included environmental flows
Climate change, total	GHG emissions, GWP100 (kgCO2eq)	Intergovern mental Panel on Climate Change (2007), Beylot (2019, 2020)	CO2, CH <i>4</i> , N2O, SF <i>6</i> , HFC, PFC
Ecotoxicity,	Comparative Toxic Unit	Rosenbau m et al.,	Benzo(a)pyrene, Indeno(1,2,3-cd) pyrene, PCDD_F, HCB, As, Cd, Cr

Table 7: List of social, environmental, and economic indicators.

Proposed EF impact category	Unit (environmental impact category indicator)	Source	Included environmental flows
freshwater	for ecosystems (CTUe)	(2008), Beylot (2019, 2020)	Hg, Cu, Ni, Pb, Benzo(k)fluoranthene, Se, Zn, B(a)P, Indeno, PCDD/F, NMVOC, PAH, B(k)F
Water use	Water stress (m3 of H2O equivalents)	Frischknec ht et al. (2008), Cabernard (2019)	Water consumption
Eutrophication, freshwater	Fraction of nutrients reaching freshwater end compartment (P)	Struijs et al. (2006), Beylot (2019, 2020)	NH3 - air, P
Eutrophication, marine	Fraction of nutrients reaching marine end compartment (kg N eq)	Struijs et al. (2006), Beylot (2019, 2020)	NH <i>3</i> , N
Material footprint	Material footprint (tonnes of cultivated biomass, extracted mineral ore and fossils)	Cabernard (2019)	Extraction Used
Acidification	Accumulated Exceedance (mol H+ eq)	Seppälä et al. (2006), Posch et al. (2008), Beylot (2019, 2020)	SOx, NOx, NH3
Eutrophication, terrestrial	Accumulated Exceedance (mol N eq)	Seppälä et al. (2006), Posch et al. (2008),	NH3, NOx

Proposed EF impact category	Unit (environmental impact category indicator)	Source	Included environmental flows
		Beylot (2019, 2020)	
Human toxicity, cancer	Comparative Toxic Unit for humans (CTUh)	Rosenbau m et al., (2008), Beylot (2019, 2020)	Benzo(a)pyrene, PCDD_F, HCB, As, Cd, Hg, Ni, B(a)P, Pb, PCDD/F
Human toxicity, non-cancer	Comparative Toxic Unit for humans (CTUh)	Rosenbau m et al., (2008), Beylot (2019, 2020)	HCB, As, Cd, Cu, Hg, Ni, Pb, Zn
Particulate matter	Impact on human health (DALYs)	Humbert (2009), Cabernard (2019)	PM2.5, CO, SOx, NH3, TSP
Photochemical ozone formation, human health	Tropospheric ozone concentration increase (kg NMVOC eq)	Van Zelm et al. (2008), Beylot (2019, 2020)	CH <i>4</i> , SOx, CO, NMVOC
Land-use related biodiversity loss	(Global m3 PDF years)	Cabernard (2019)	Land use, crop, forest, pasture
Ionising radiation	Human health effect	IPCC 2013; Joos et al. 2013	Change in radiative forcing

Proposed EF impact category	Unit (environmental impact category indicator)	Source	Included environmental flows
Resource use, fossils	kg oil-eq	Jungbluth and Frischknec ht 2010)	Heating value
Resource use, mineral and metals	kg Cu-eq	Vieira et al. 2016a	Increase in ore extracted
Ozone depletion	kg CFC-11 equivalent	WMO 2011	Stratospheric ozone decreases

Proposed social impact category	Unit	Source	Included flows
Gender-related	-	Bilbao-Ubillos, J.	HDI
development index		(2013)	
Job creation and loss	h/jobs*year	Pillain, B et.al (2019)	Working hours,
			Biomass availability
Skill development	% of GDP	Husgafvel, R et	Hours of training
initiatives		al.(2015)	

Proposed economic impact category	Unit	Source	Included flows
Emerging investment ratio	dollar	Karwowski, E., & Stockhammer, E. (2017)	GDP%
Imports and export prices of raw material	dollar	Sheinbaum-Pardo, C. et al. (2012)	Domestic extraction, imports of raw material

4.4 Reporting of insights

4.4.1 Using MooV

In general, MooV applies a three-step approach (Define, Design, Deliver) towards reporting of insights/outputs (Figure 6):

Figure 6:MooV's three-step methodology

Define phase: in which all scenario specifics are discussed with the client.

Design phase: in which the MooV model is customized reflecting the client's specific needs (defined in the Define phase).

Deliver phase: in which the MooV scenarios are ran – and outputs/results are presented and discussed with the client (Figure 7).

Figure 7:Dashboard with MooV output

Figure 7 shows a visual of a dashboard with MooV outputs. Such dynamic online dashboards are developed on demand and allow clients to compare results of the different supply chain scenarios

side-by-side. The dashboard is intended to visualize the results of the simulated/optimized scenarios. However, it also might give the opportunity to the client to perform limited network simulations (e.g., changes in supply/demand). The dashboard format is customizable to client's needs.

4.4.2 Using RFA

Sankey diagrams provide a visual and accessible way to communicate the transition plan to stakeholders, garnering support from businesses, government agencies, and the community. We will use these diagrams to explain the policy makers the various ways in which an existing bio-waste can be integrated in the existing linear system while phasing out fossil fuel dependence. For instance, straw, in the current state, is mainly used as bedding residue and afterwards it gets composted. In a future scenario, further value chains would be introduced to convert these flows. For example, they can be utilized as insulation material and the leftover from this conversion process will be used in furnace application. Due to the increase of conversion facilities, additional environmental impacts must be calculated. This enables stakeholders to assess whether the goals of reducing fossil fuel dependence and enhancing circularity are being achieved.

Figure 8: Straw scenario description using Sankey (RFA: first Sankey diagram shows the initial state of straw usage, and the second Sankey diagram shows the projected evolution of resource flows over time, highlighting potential areas for residue valorisation, as depicted in the subsequent diagram

4.4.3 **Using IAT**

Results from the circularity assessment can be visualized in a simple table. Results from the application of the detailed assessment framework are represented within the Doughnut Economics model. This provides a visual representation of the inner boundary (socio-economic foundation) that represents the minimum standards for human well-being, and the outer boundary (environmental ceiling) that represents the environmental limits of the region. The area between these boundaries is a "safe and just space for the region." The regional targets are specific to the unique characteristics and challenges of each region. An illustrative example of the Doughnut model is given in Figure 8.

Figure 9: CU - carbon uptake, B - biodiversity, SJ - social justice, LS - life satisfaction, UL - unbuilt land. A red area represents an overshoot from the ceiling (for environmental boundaries) or a failure to meet a threshold (for social foundations). E.g., Bluewater use is deemed sustainable, as it is under the ceiling, while freshwater eutrophication is the indicator that overshoots its boundary by the highest margin.

ANNEX 1

Categories systemati- cally consid- ered	Aspect	Related indicators	Unit	Sources
		Ozone depletion po- tential (ODP)	Kg CFC-11 eq	Wozniak et al. 2021
	Climate change	Global warming po- tential	kg CO ₂ eq	Skytt, T., Nielsen et al. (2020)
		Fossil fuel depend- ence	MJ	SourcesaWozniak et al. 2021Skytt, T., Nielsen et al. (2020)Solarin, S. A. (2020)p ⁻¹ yrLi, Y., Shang et al.(2021).iiva- adAlamdari, N et al. (2020).Mainardis, M et al. (2021).Gustafsson, M et al.(2018)Orellano, P et al.(2020)Orellano, P et al.(2020)Orellano, P et al.(2020)Orellano, P et al.(2020)Orellano, P et al.(2020)Unition ation ation ation)Karvonen, J et al.(2017)Weissmannová et al. (2017)ution ation al. (2017)City n re- sCity n re- sCucchiella, F et al. (2017).
		Eutrophication of freshwater	kg N(or P) cap ⁻¹ yr ⁻	Li, Y., Shang et al.(2021).
	Water quality and quantity	Water resource con- sumption	m3 water equiva- lent of deprived water	Alamdari, N et al. (2020).
		Ecotoxicity of fresh water	CTUe	Mainardis, M et al. (2021).
		percentage of popula- tion exposed to PM 2.5	_	Gustafsson, M et al.(2018)
	Air quality	nitrogen oxide (NOx)	ppm	Orellano, P et al.(2020)
		sulphur oxide (SOx).	ppm	Orellano, P et al.(2020)
		PM 2.5,		Orellano, P et al.(2020)
Environmen- tal		Land degradation	m2/a(occupation or transformation)	Mainardis, M (2021)
	Land use land use changes	Land cover change	m2/a(occupation or transformation)	Karvonen, J et al.(2017)
	Soil pollution Use of pesticide	Use of pesticides	kg/ha	Weissmannová et al. (2017)
	energy use	Share of renewable mix, intensities	% of electricity coming from re- newables	Cucchiella, F et al. (2017).

Categories Aspect		Related indicators	Unit	Sources	
systemati- cally consid- ered					
		Expenditure on biodi- versity	% of GDP	Seidl, A. et al. (2021)	
	Biodiversity	Biodiversity Habitat Index	N/A (0-1)	Chaudhary, A. et al. (2018)	
		Price regulation for bi- omass	USD	Popp, J. et al. (2021)	
Social	Governance	Bio-economy focused legislation	no of Policies	Wang, Q., & Zhang, F. (2020)	
		GDP investment on research and devel- opment	investment on arch and devel- ent Derature level at Currency of the country Derature level at Coca, G. et a	Adedoyin, F. F. et al.(2020)	
	Employee empower- ment and em- ployment conditions.	Temperature level at working stations		Coca, G. et al. (2019)	
		Employee health and safety training hours	hr per year	Popovic, T. et al. (2018)	
		Working hours	hr per year	Popovic, T. et al. (2018)	
		Added value		Asheim, G. B. (2017)	
	Gender-re- sponsive	Gender-related De- velopment index		Calicioglu, O., & Bogdanski, A. (2021)	
Transition from linear (fossil		Replacing non-renew- able feedstock by bio- mass		Rosenboom, J. G., Langer, R., & Traverso, G. (2022)	
	based) to cir- cular bio based sys-	Substitution share in- dicator		Jander, W., & Grundmann, P. (2019)	
	tem	Sub-raw index	no dimension	Wolfslehner, B. et al. (2016)	
Circular	Reduce	Recycling for specific waste streams (RSWSI)	% (ratio of same units, namely tonnes)	Sub-indicators: Recycling rate of total packaging waste. Recycling rate of plastic packaging waste. Wood packaging recycling rate. Recycling rate of electrical and elec-	

Categories	Aspect	Related indicators	Unit	Sources
systemati-				
ered				
				waste). Recycling of bio- waste per capita. Recovery rate of construction and demolition waste.
		Recycling rates (RRI)	% (ratio of same units, namely tonnes)	Sub-indicators: Municipal waste recycling rate Recycling rate of total waste exclud- ing mineral waste
	Donoir	Revenue from up- grade, repair and maintenance services	US Dollar (\$)	Kravchenko, M. et al. (2019)
	Specific energy con sumption in opera- tions		kWh/m2.a	Kravchenko, M. et al. (2019)
	Remanufac- ture	Energy intensity	Joules/ US Dollar (\$)	Hegab, H. A. et al. (2018)
	Matorial cir.	Material circularity in- dicator	between 0-1	Niero, M., & Kalbar, P. P. (2019)
	cularity	Material utilization score	%	Moraga, G. et al. (2021)
		Eco-efficient value ratio	Ratio (no unit)	Figge, F. et al. (2018)
		Emerging investment ratio		Karwowski, E., & Stockhammer, E. (2017)
		Share of SMEs		Regmi, M. B. (2020)
Economical		Value added		Ronzon, T. et al. (2020)
		Jobs in bioeconomy		
		Import and export prices of the sector		Sheinbaum-Pardo, C. et al. (2012)
		Innovation intensity		Velasco-Muñoz, J. F. et al.(2021)
		Return on invest- ments		Velasco-Muñoz, J. F. et al. (2021)

ANNEX 2

Table 9: Regional transition theme, regional target, input required.

Required	Inputs required:	Andalusia (Spain)	Northern Burgenland	Western Macedonia	Finland	Charles Spa	North Rhine-Westpha-
for tool:			(Austria)	(Greece)		Region (Czech	lia (NRW-Germany)
						Republic)	
MooV +	Main pur-	Tourism, Mobility, Agri-	Agriculture, wine and rec-	Decarbonisation of	Forestry	Spa industry,	Chemical Industry
LIST	pose(s)+C2:C15C2:C14C2:C13C2:C2:C31	culture, Industry	reational activities re-	energy production,		glass and	
+ALCN			garding lake Neusiedl,	agriculture and wine,		porcelain man-	
			Commuter Traffic	mining, fur & leather		ufacture, build-	
						ing materials,	
						textiles and mu-	
						sical instru-	
						ments manu-	
						facture, ignite	
						mining (loosing	
						siginifcance),	
						Quarries	
	Geographical scope: Area of concern	Andalusia	Northern Brugenland	Western Macedonia	Finland entire	Charels Spa	North Rhine-Westpha-
			NUTS AT 112		country	Region	lia
LIST	Transition themes, e.g. Energy transition, agro-	Resource efficiency and		Energy transition	Energy transi-	Energy transi-	
	ecology, Post-growth economy, etc.	energy transition.			tion, biodiver-	tion: The big-	
					sity preserva-	gest employer	
					tion/regenera-	in the region is	
					tion	in coal mining	
			L. P. M.			industry	"D'
	Quantified target for one or several socio-eco-	- Increase employment	Indicators:	- The Municipality of	Improve the	Indicator Ideas:	- "Blookonomiestrate-
	nomic, environmental impact(s)		- Utilized material llows of	Kozani s Action Plan:		- Area treated	gie :
		Energy and resource of	secondary raw materils	100% CO2 emis-	torestry side	Brownileid	- more enicient re-
		- Energy and resource er-		2020 compared to	Suedins,	- educational	the introduction of
		duce Waste generation		the base year 2010	switch to re-	nonulation do	
			-> if too ambitious Bioe	The Green City Ac-			
		cling energy sources for		cord	ergy sources,	-quantity R&D	- cascade use of re-
		industry)	- Car/Capita	- A significant im-	- target for re-	facilities	energy second an-
		- Shift to sustainable mo-	- Used biobased carbon	nrovement in air	newable en-		nroach when using hi-
		bility / transport & logis-	-used CO2	quality moving closer	erav is 51%		omass so (food)
		tics	4304 002	to respecting the	by 2030 (2019		waste side streams
		- Reduce impact of tour-		WHO's Air Quality	NFCP - Na-		should be considered
		ism on biodiversity		Guidelines	tional Energy		specifically.

Required	Inputs required:	Andalusia (Spain)	Northern Burgenland	Western Macedonia	Finland	Charles Spa	North Rhine-Westpha-
for tool:			(Austria)	(Greece)		Region (Czech	lia (NRW-Germany)
		(exploitation of coastal		- Improve the qual-	and Climate	ποραδίιο)	- "Innovation strategy
		(exploitation of codotal		ity of water bodies	Plan) consid-		NRW" and the "Car-
				and the efficiency of	ering a share		bon Management
				water use	of 37% in		Strategy": that the re-
				- Progress in con-	2019		gional change to more
				serving and enhanc-	- For		sustainability and the
				ing urban biodiver-	transport the		commitment to the en-
				sity, including	proportion of		vironmental goals has
				through an increase	renewable en-		high priority.
				in the extent and	erav must be		- NRW's sustainability
				quality of green ar-	14% in each		strategy:
				eas in cities, and by	Member State		- Use resources eco-
				halting the loss of	by 2030.		nomically and effi-
				and restoring urban	- Finland's		ciently
				ecosystems.	Distribution		- Increasing eco-
				- Significant im-	Obligation Act		nomic efficiency in an
				provement in the	will increase		environmentally and
				management of	the share of		socially responsible
				household municipal	biofuels in		way
				waste, an important	transport from		- Increase employ-
				reduction in waste	18% to 30% in		ment levels, especially
				generation and land-	2021–2029.		among women
				filling, and a sub-	(Finnish Min-		- Create new solu-
				stantial increase in	istry of the En-		tions for the future
				re-use, repair, and	vironment		- Support sustainable
				recycling	2022)		lifestyle and consump-
				- Significant reduc-	- Achieve car-		tion
				tion in noise pollu-	bon neutrality		- Increase share of
				tion, moving us	by 2035 and		sustainable production
				closer to the levels	to halt the de-		- Increase share of
				recommended by	cline in biodi-		sustainable public pro-
				the World Health Or-	versity by		curement
				ganization.	2030. (Finnish		- Reduce GHG emis-
					IVIINISTRY OF FI-		sions
				Indicator ideas:	nance 2023)		- Protect sustainable
				- Bioeconomy em-	-		Torestry
				pioyment			- Protect ecosystems,
				- Bioeconomy turno-			ecosystem services
				Ver			and nabitats
				- Bioeconomy com-			
				panies			

Required for tool:	Inputs required:	Andalusia (Spain)	Northern Burgenland (Austria)	Western Macedonia (Greece)	Finland	Charles Spa Region (Czech Republic)	North Rhine-Westpha- lia (NRW-Germany)
				- Energy decarboni- sation			
MooV + LIST	Time horizon to which the target shall be reached / Total period for which the assessment is carried out	Depends on the pathway			2030	2033 (away from coal)	
	Planning period: shortest time span at which time related decisions can be made by the model. This allows to capture seasonal variations in e.g., sup- ply or demand.	Annual for most path- ways	Annual	Annual (?)			
MooV + LIST	Main sectors / main processes contributing to the impact under focus	 Services (including mainly tourism) (75% GDP) Industry (12% GDP), Construction (7% GDP), Agro-fishing (6% GDP) 	- Primary Production i.e. wheat, soy, reed and Wine - Lake Mud (differnt to sewage sludge)	- Energy production - Agriculture - Wine - Fur & leather	Forest man- agement (stock and flows) Forestry prod- ucts industry	Spa Tourism in- dustry, Manu- facture of metal structures and fabricated metal products, ex- cept machinery and equipment - 37 % GDP Beverage pro- duction - 11 % GDP Manufacture of other non-me- tallic mineral products - 10% Textile - 8% vehicles - 8%	 Lignite mining Chemical industry Crop production Energy production

Required for tool:	Inputs required:	Andalusia (Spain)	Northern Burgenland (Austria)	Western Macedonia (Greece)	Finland	Charles Spa Region (Czech Republic)	North Rhine-Westpha- lia (NRW-Germany)
	Main raw materials or products of concern / refer- ence flow	- Agriculture and food products flows -	- straw - sludge - Wine residues (pomace and prunings)	- Manure, solar power, biomass - Cereal crops, fruit trees - Grapes - Animal skins	Wood re- source, wood products, For- estry side streams, Wa- ter consump- tion and treat- ment, use of chemicals in pulp and pa- per industry (highly signifi- cant for the country).	Bio-waste from restaurants, ca- tering and hotel industry, Bio- degraadable municipal waste	- Chemicals (naphta feedstock?) - Rapeseed (for chemi- cals) ?
LIST	Main drivers towards the target / Identified transi- tion pathway (main actions)						
	Technical transition (infrastructures development / technology switch,)						
	Policy incentives	 The 2021 Andalusian Climate action Plan The 2018 Andalusian Circular Bioeconomy Strategy The 2018 Strategy for Sustainable Develop- ment 2030 The 2019 Integrated Waste Plan of Andalusia The 2022 Circular Economy Law Andalucía energy strat- egy 2030 		 National Strategy for the Circular Economy 2018-2030 National Energy and Climate Plan 2030 Long-term Strategy 2050 National Air Pollu- tion Control Program 2020 – 2029 National Develop- ment Program 2021- 2025 National Biodiver- sity Strategy Development Plan for the Greek Econ- omy National Recovery and Resilience Plan National Waste Management Plan 	 Recovery and Resili- ence Plan of Finnish Gov- ernment - en- hance the economy of Finland through green technologies. EU's target to reduce net greenhouse gas emissions by at least 55% by 2030. EU forest strategy for 2030 EU biodiver- sity strategy for 2030 'Fit for 55' - 	Development Programme of the Region 2021-2027	

Required for tool:	Inputs required:	Andalusia (Spain)	Northern Burgenland (Austria)	Western Macedonia (Greece)	Finland	Charles Spa Region (Czech	North Rhine-Westpha- lia (NRW-Germany)
			. ,	· · · ·		Republic)	
				 Regional Waste 	proposals for		
				Management Plans	transformation		
				Regional Social In-	from linear to		
				clusion Strategy	circular econ-		
				 Digital Transfor- 	omy in Fin-		
				mation Bible	land, (pro-		
				Operational Plan	posed		
				for the Sustainable	changes to		
				Urban Development	EU Emissions		
				Strategy of Western	Trading Sys-		
				Macedonia, Munici-	tem (ETS),		
				pality of Kozani, Mu-	and Land Use		
				nicipality of Florina	and Land-Use		
				 Integrated Spatial 	Change For-		
				Investment for the	estry).		
				Utilization of the	- Finnisch		
				Lakes of Western	ministry of the		
				Macedonia	environment		
					(2023) strate-		
					gic pro-		
					gramme for		
					circular econ-		
					omy - objec-		
					tives for use		
					of natural re-		
					sources to		
					promote circu-		
					lar economy		
					model and to		
					assist accom-		
					plishment of		
					the targeted		
					carbon neu-		
					traility by		
	Conjetal (consumer helps for market shift for	Concorn of non-deflor	Concorn of uncomplay	Concern of nemula	2035.	Droip droip ro	
	Societal (consumer benavior, market shift fore-	concern of population	mont	tion about departan	forest sover	Drain urain, ré-	
	uasis,)	about environmental IS-	Concorn of the only rec	lion about decarbon-	75% of the	adopt pour toch	
		sues related directly of	Concern of the enivron-			adopt new tech-	
		indirectly to their con-		reducing income in a	and, and the	noiogies, eau-	
		sumption model (100d,		reducing income in a		cation gap re-	
		lenergy, natural	[region already struck	connection of	garding CBE	

Required for tool:	Inputs required:	Andalusia (Spain)	Northern Burgenland (Austria)	Western Macedonia (Greece)	Finland	Charles Spa Region (Czech	North Rhine-Westpha- lia (NRW-Germany)
		environment). Concern of population about unemployment.		hard by the crisis	population is fully part of their culture and daily life.	кериыс)	
	Economic (investments, costs and revenues, subsides, taxes,)	Low support from public funding - lack of stability of the regional public support instruments				Low funding support and in- vestment on R&D and edu- cation	
MooV + LIST + ALCN	Value chain (from raw materials generation, to in- termediate product, end product, use and end of life) description through detailed processes/stake- holders nodes available	General processing for food, drink and milk, from materials reception to post processing opera- tions	- Primary Production processes, Lignocellu- lose based, residues from pomace (esp. vine), Sludge	Sustainable energy production Agriculture	General pro- cessing steps available for transformation of wood in sawnwood, woodboards, pulping, paper making, textile	Processing of food waste & bio-waste from the tourist in- dustry for en- ergy conver- sion, separa- tion, biogas plants, com- posting, oils for the production of technical oils and lubricants	
MooV	Potential geographic location for each node/stage is available	Probably available, de- pending on the node/stage	is available	probably available	available	Partly available	
	Transportation options between the different stages	Depends on the pathway	depends on transfor- mation pathways	depends	depends on the selected material case	Depends on the pathway	
	Special constraints that apply to specific stage or to the supply chain as a whole (e.g. timing: like raw material needs to be processed within X hours/weeks/; <u>biomass availability</u> during the year (seasonal crops), <u>impossible combination of</u> <u>processing steps</u> ; <u>quality aspects</u> : processing step X requires fresh biomass Y which is not older than Z, etc) List of proposed interventions and where they im- pact the supply chain.	For agricultural path- ways, there could be seasonal production (af- fecting biomass availabil- ity) and seasonal storage constraints. For tourism, seasonal issues need to be considered.	 primary production def. timing (storage is- sues) availability (seasonal) Sludge different more constant harvesting time reed (only winter months due 	?	depends on the selected material case	Seasonality of the tourist in- dustry (most and least busy period?)	
	1 ·····		to natural law restrictions)				

Required	Inputs required:	Andalusia (Spain)	Northern Burgenland	Western Macedonia	Finland	Charles Spa Region (Czech	North Rhine-Westpha-
			(Ausula)	(0/6606)		Republic)	na (IVIXV-Oermany)
	Availability of background data required for each assessment tool						
MooV +	For each stage of the value chain:						
ALCN (mainly material capaci-	Location	Partly available, it might be difficult for some pri- mary production linked pathways	Difficult for primary pro- duction, secondary pro- duction adresses availa- ble	GIS coordinates available	GIS coordi- nates availa- ble	Partly available	GIS coordinates avail- able
ties)	Processing capacities					Partly available	
	Material balance equations					estimations	
	Processing Costs (OPEX)					estimations	
	Investment cost (CAPEX)					unknown	
	For each transport option:						-
	Transportation capacities					Road & train?	-
	Costs (per trip, per ton transported, per km)					?	
LIST + ALCN	Other (optional): Criteria to narrow down the list of potential locations, Environmental impacts (e.g., CO2/km transported or CO2/ton processed,) for each activity, Market offer and demand Production and/or Consumption-based quantifica- tion (euros) of significant flows (energy and mate- rials per type), per sector. >> Market data, consumption data, regional / na- tional statistics, bill of mass, bill of energy.	Figures available for most pathways, specially for materials flows. As for the energy flows, there could be global figures for the region/macro level per pathway		- Average of 6,000 tonnes of woody bio- mass per year from a government-spon- sored programme - 9,000-12,000 tonnes of residual forest biomass per year - 1,500 tonnes per year of residual bio-	Global num- ber available	Partial data for the catering, hospitality sec- tor. Biode- gradable waste from kitchens and catering establishments in 2021 was 635.3 t, more research on en-	- sugar beet (and po- tato) have an area un- der cultivation of 61.000 to 81.000 hec- tares
	Variation of the consumption / production consid- ering each intervention. >> Estimates and forecasts officially published.	Some figures linked to % that could be found in re- gional strategic agendas or plans		mass from lavender cultivation - 45 tonnes per year from walnut shells		ergy consump- tions required	

Required for tool:	Inputs required:	Andalusia (Spain)	Northern Burgenland (Austria)	Western Macedonia (Greece)	Finland	Charles Spa Region (Czech Republic)	North Rhine-Westpha- lia (NRW-Germany)
ALCN	As detailed as necessary classification system for bioeconomy commodity classes	Certain pathways identi- fied, with further explora- tion possible	Defined value chains, transformation pathways			Certain path- ways identified, with further ex- ploration possi- ble	
	Quantities of resiudal bio based resources de- rived from primary and secondary production sys- tems	Available for some path- ways linked to agri- food/primary sector	Available for Primary sec- tor not for secondary sec- tor			partly available data from sec- ondary food production	
	Composition of residue (protein , starch, poly- mers, sugars, lipids, polyphenol)	Few information only for some agricultural bio- mass residues				mixed waste	
	Temporal availability	Seasonal production				Seasonal fluc- tuations of the tourism sector	
	Wet content	Few information only for some agricultural bio- mass residues				?	
	Transformation platform / concept (Biorefinery)	Just a few biorefineries available in the region				composting, bi- ogas plants etc	
	Current usage of the secondary biomass (byprod- uct)	Landfill or energy; for some pathways, value added products				Landfill or en- ergy	

ANNEX 3

Table 10:Regional main drivers, desired policy incentives and identification of new value chains

Related Requirements	Identify the main driver for the transition and final targets (e.g. reduce by X% GHG footprint by 2030/increase by Y% the amount of renewable energy for all sectors)	Main actions on contextual arguments/
Northern Burgenland (Austria)	 Creation of local value chains rising regional business. Expressed as business gross product generated in the region NUTS 112 Increasing employment in the region. Allocated to the bioeconomy The increase in the number of young adults living in the region Water level of the Neusiedler lake (important for tourism) Reduced commuting km Northern Burgenland is a top performer in terms of GHG emissions and renewable energy share 	 Public data needed of producers in the Nace C and Nace A sector Estimation of how much farmers produce biomass themselves (This type of biomass utilization fails the common statistics) Quantification of biomass and conversion abilities, identification of stakeholders and assessment of the willingness to cooperate
Western Macedonia (Greece)	 Decarbonisation and climate neutrality of the region (emission reductions). Creation of new local value chains in bioeconomy 	 Identification of local stakeholders, their needs, main barriers

Finiand	•According to the Recovery and Resilience Plan (EU), Finland aims to achieve carbon neutrality by 2035 and to halt the decline in biodiversity by 2030	•Circular economy targets and renewable energy targets must be optimized and quantified together, since wood-based energy (mainly from the incineration of forest industry side streams and logging wastes) represents 77% of the total renewable energy in Finland. The renewable energy share of all energy was 37% in 2019, and the same year Finland reported that its target for renewable energy is 51% by 2030.
Charles Spa Region	 Decarbonization and circular valorisation of waste from existing value chains like the Spa industry, Food & Beverage production Charles Spa is a Just Transition Funding Region and following the EU plan for the regions in transformation. 	 Proposal for concrete steps for transformation in a multi actor approach, i.e. with the direct involvement of regional stakeholders, securing funding resources, invest in CBE related education and R&D centres, research added value applications for waste streams other than energy

Germany	•Reduction of GHG by 65	 Improvement of end-of-waste
	percent in contrast to 1990	and transportation
	(according to the	legislation to facilitate the
	Klimaschutzgesetz NRW	use of additional
	from 2021). Climate	feedstocks.
	protection goals shall be	 The creation and expansion
	raised in the amendment of	of scale-up facilities.
	the climate protection law,	 Invest in infrastructure, R&D,
	which is in preparation.	novel technologies to close
	 Climate protection should act 	loops and create
	as driver of innovation and	innovations needed for the
	modernization.	transition.
	 NRW is within transition from 	 Statistics exist on national
	a region partly influenced	and state level (eg on
	by lignite mining (ends	economic sectors or
	2030) to fostering the	biomass or waste
	development of innovative	production). A more
	and sustainable companies	detailed monitoring of
	and enterprises. A	biobased feedstocks at the
	subregion of NRW, the	producer level is needed to
	Rhenish Mining Region,	manage availability.
	wants to become a model	
	region for bioeconomy.	
	 The chemical industry in 	
	NRW has set itself	
	decarbonization targets,	
	including a shift from fossil	
	based to renewable	
	feedstocks	
Andalusia - Spain	 Increase in the number of 	 Increasing the availability of
	companies using the by-	sustainable biomass for
	product or waste streams	utilization through
	of others as feedstock,	innovative treatment.
	making the benefits of	 To increase the number of
	industrial symbiosis	biorefineries in Andalusia.
	evident.	 Facilitating the flow of
	 Large contribution of 	information between the
	renewable energies to the	different stakeholders
	Andalusian energy mix,	 Development of biohubs
	due to favourable	where sustainable biomass
	environmental conditions.	management can be
	 Creation of new jobs. 	realized.

ANNEX 4: MooV methodology

Goal and scope definition (Define)

When setting up a new supply chain or changing an existing chain, the supply chain options can be numerous. This phase has the objective to define the potential supply chain configurations in function of existing components and potential additional components, the requirements to be considered and the questions to be answered. This phase sets the boundaries of the MooV analysis or in other words, it defines the borders of the virtual supply chain to experiment in. Different components are at stake which are not necessarily performed in a chronological order:

1. Concept definition

• Sketching the problem statement

• Defining the overall objective (minimise cost, maximise profit, minimise environmental impact, ... or combination of objectives)

2. Time Context

- Define the time related context
 - 1. Seasonal product fluctuations, historic trends, future projections...
 - 2. Storage & transport period
 - 3. Planning horizon and planning period

3. Products

- Define all relevant products in the value chain
 - 1. Primary product/resources/feedstock (roadside grass...)
 - 2. Intermediate product (chopped grass, baled grass...)
 - 3. End-products (biogas, building materials, landscaping materials...)

4. Activities

- Define all relevant activities in the value chain
 - 1. Pre-processing (pressing, chopping...)
 - 2. Storing or transferring (silage, bales...),
 - 3. End-processing (compounding, digesting, extruding...)

4. Transport modes (truck, train, ship...)

5. Supply Chain Diagrams

• Diagrams serving as a blueprint of the supply chain design and defining the system boundaries:

1. Block flow diagram representing all relevant interconnections between products and activities

2. Network flow diagram representing all possible product flows between locations (i.e. location of resources and activity sites)

6. Geographic Context

• Define geographical and spatial parameters:

- 1. Boundaries of the study area
- 2. Potential or actual location of resources
- 3. Potential or actual location of activity sites
- 4. Transportation/Logistics network(s)

7. Conditional Context

• Define specific conditions based on expert knowledge (via survey), scientific literature (via review) and empirical (via demo-cases);

1. Regulatory conditions: conditions can limit (negative) or favour (positive) certain products, activities, interconnections, configurations...

2. Physical conditions: economic, technical, environmental, social... constraints or preferences.

8. Competitive/Cooperative Context

- Define relevant third-party value chains in view of competition (risk) or cooperation (opportunity).
- Define how the new value chain interacts with the existing value chains.

Specific MooV-shell development (Design)

MooV's core-shell architecture is developed with a focus on flexibility for application on any type of activity, product, condition or objective. An important prerequisite is that this flexibility is offered without the need to question the system's fundamental logics (i.e. MooV-core), nor the need for major additional model developments for each individual case. This phase has the goal to customise the MooV-shell to meet the specific needs and objectives as described in the define phase.

9. MooV database-design

- Design the Database structure to match the Case specifics
- Datafication collect quantitative/qualitative data relevant for the cases:
 - 1. Physical data: masses, volumes, density... of products...

2. Technical data: storage and processing capacities, transport capacities, quality requirements...

3. Economic data: costs, revenues...

4. Environmental data: greenhouse gas emissions, sustainable transport, land-use change

5. Time data: growth models, transport times, production speed, (un)loading times...

6. Geographical data and analysis: locations of resources, activities, transport network...

10. MooV model-design

• Tailor the MooV-model – Mixed Integer Linear Programming (MILP) coding to match the Case specifics

1. Programme the objective(s): minimise costs, emissions, mileage... or maximise revenue, storage use, production volume...

2. Programme the possible interconnections and network configurations (based on 4)

3. Programme additional constraints and requirements

Supply chain analysis and optimisation (Deliver)

MooV supports in defining the best supply chain configuration by comparing alternative scenarios side-by-side and assess the impact of critical decisions on the efficiency and configuration of the overall chain by performing sensitivity analyses.

11. Scenario or 'what if' analysis

• Experiment with the virtual supply chain: by running 'what-if' scenarios MooV shows the impact of strategic value chain choices on the value chain performance and allows comparing different value chain scenarios with each other:

1. Greenfield analysis, "what if", policy changes, etc.

- 2. Identification and budgeting of critical hurdles
- 3. Analyse the impact of proposed mitigation measures

12. Sensitivity analysis

• Examine the robustness of the value chain by performing sensitivity analyses on critical parameters. These sensitivity analyses are performed by using multiple what-if analyses to see how the configuration and efficiency of the chain varies by influence of a parameter.

13. Interpretation and discussion of the results

ANNEX 5: Calculation of circularity indicators

No	Calculation formula	Explanation
•		
1	Output of main mineral resource ¼ GDP/total consumption of main mineral resource (Unit: 10,000 U/ton)	A higher value means more efficient use of mineral resource. The main types of mineral resources include iron-, copper-, lead-, zinc-, tin-, antinomy-, tungsten-, molybdenum-, pyrite-, and phosphate ore, etc
2	Output of energy ¼ GDP/Energy consumption (Unit: 10,000 ¥/ton sce)	A higher value means more efficient use of energy. The energy source includes coal, oil, natural gas, nuclear power, wind power and hydro power
3	Energy consumption per unit of GDP ¼ Energy consumption/GDP (Unit: ton sce/10,000 ¥)	The total energy consumed per 10,000 ¥ produced. The lower value means more efficient energy consumption.
4	Energy consumption per added industrial value ¼ Industrial energy consumption AVI(Unit: ton sce/10,000 ¥)	The lower value of this indicator means more efficient energy consumption.
5	Energy consumption of key industrial product ¼ Energy consumption of steel (copper, aluminium, cement, fertilizer, paper)/steel production (copper, aluminium, cement, fertilizer, paper) (Unit: ton sce/ton)	Key industrial sectors include mining industry, manufacturing industry, water, electricity and gas production and supply industry. Main products include steel/iron, copper, aluminium, cement, fertilizer, paper etc. The lower value means more efficient energy consumption
6	Water withdrawal per unit of GDP ¼ total amount of water withdrawal/GDP(Unit:10,000 m3 /¥)	Water withdrawal includes all kinds of fresh water sources, such as surface water, groundwater, recycled wastewater, rainwater, desalinated seawater etc, but excludes the directly used seawater. The lower value means more efficient water consumption.
7	Water withdrawal per added industrial value ¼ amount of industrial water withdrawal/AVI(Unit:10,000 m3 /¥)	Water withdrawal means water consumption. Water withdrawal here is the water consumed during the industrial processes, such as manufacturing process, cooling process, air conditioning and purification processes. Fresh water consumption value here

Table 11:Calculation formulation for the circularity indicators

No	Calculation formula	Explanation
•		
		does not include any recycled water. The lower value means more efficient water consumption
8	Water consumption of key industrial sector product ¼ total amount of fresh water consumption/total amount of steel production (copper, aluminum, cement, fertilizer, paper)(Unit:10 ⁸ m3 /ton)	Water consumption efficiency in key industrial sectors.
9	Coefficient of irrigation water utilization ¼ actual amount of irrigation water consumption/total amount of irrigation water consumption	Ratio of actual amount of irrigation water consumption to total amount of irrigation water consumption. The higher value means more efficient water use in agricultural sector
10	Recycling rate of industrial solid waste ¼ (industrial solid waste integrated utilization Q/Industrial solid waste generation) x 100%	Ratio of amount of integrated utilized industrial solid waste to total amount of industrial solid waste.
11	Industrial water reuse ratio ¼ (industrial repetitive water use Q/Industrial water consumption) x 100%	Industrial water reuse includes both recycled water reuse and cascaded water reuse. Industrial water consumption includes water consumption for both industrial and living purposes.
12	Recycling rate of wastewater ¼ (Treated wastewater reuse Q/Total treated wastewater Q) x 100%	The reuse of treated wastewater includes both treated domestic wastewater and industrial wastewater that is qualified with the national recycling water standard. The total treated wastewater is the actual amount of wastewater treated in the wastewater treatment plant, including physical, biological and chemical treatment.
13	Safe treatment rate of municipal rubbish ¼ (total amount of safely treated domestic waste/total amount of domestic waste cleaned up) x 100%	Ratio of total amount of safely treated domestic rubbish to total amount of domestic rubbish.
14	Recycling rate of iron scrap ¼ (Amount of recycled iron scrap/total amount of iron production) x 100%	Ratio of amount of recycled wasted iron scraps to total amount of iron production.

No	Calculation formula	Explanation
1.		
15	Recycling rate of non-ferrous metal ¼ (Amount of recycled non-ferrous metal/total amount of non-ferrous metal production) x 100%	Ratio of amount of recycled mom-ferrous metal to total non-ferrous metal production.
16	Recycling rate of paper ¼ (Amount of recycled paper/total amount of paper production) x 100%	Ratio of amount of recycled paper to total amount of paper produced
17	Recycling rate of plastic ¼ (Amount of recycled plastic metal/total amount of plastic production) x 100%	Ratio of recycled plastic to total amount of plastic produced.
18	Recycling rate of rubber ¼ (Amount of recycled rubber/total amount of rubber production) x 100%	Ratio of recycled rubber and total amount of rubber produced.
19	Industrial solid waste for final disposal (Unit: ton)	Total amount of industrial solid waste for final disposal.
20	Industrial wastewater discharge (Unit: ton)	Total amount of discharged industrial wastewater.
21	SO ₂ emissions (Unit: kg)	Total amount of SO ₂ emission
22	COD discharge (Unit: kg)	Total amount of chemical oxygen demand (COD)

References:

Adedoyin, F. F., Bekun, F. V., & Alola, A. A. (2020). Growth impact of transition from non-renewable to renewable energy in the EU: the role of research and development expenditure. Renewable Energy, 159, 1139-1145.

Alamdari, N., Sample, D. J., Ross, A. C., & Easton, Z. M. (2020). Evaluating the impact of climate change on water quality and quantity in an urban watershed using an ensemble approach. Estuaries and Coasts, 43, 56-72.

Asheim, G. B. (2017). Net national product as an indicator of sustainability. In The Economics of Sustainability (pp. 233-241). Routledge.

Beylot, A. et al. Assessing the environmental impacts of EU consumption at macro-scale. J. Clean. Prod. 216, 382–393 (2019).

Beylot, A., Corrado, S. & Sala, S. Environmental impacts of European trade: interpreting results of process-based LCA and environmentally extended input–output analysis towards hotspot identification. *Int. J. Life Cycle Assess.* 25, 2432–2450 (2020).

Bilbao-Ubillos, J. (2013). The limits of Human Development Index: The complementary role of economic and social cohesion, development strategies and sustainability. *Sustainable Development*, *21*(6), 400-412.

Böhringer, C., & Jochem, P. E. (2007). Measuring the immeasurable—A survey of sustainability indices. Ecological economics, 63(1), 1-8.

Cabernard, L., Pfister, S. & Hellweg, S. A new method for analyzing sustainability performance of global supply chains and its application to material resources. *Sci. Total Environ.* 684, 164–177 (2019).

Calicioglu, Ö., & Bogdanski, A. (2021). Linking the bioeconomy to the 2030 sustainable development agenda: Can SDG indicators be used to monitor progress towards a sustainable bioeconomy?. New Biotechnology, 61, 40-49

Chaudhary, A., Gustafson, D., & Mathys, A. (2018). Multi-indicator sustainability assessment of global food systems. Nature communications, 9(1), 848.

Coca, G., Castrillón, O. D., Ruiz, S., Mateo-Sanz, J. M., & Jiménez, L. (2019). Sustainable evaluation of environmental and occupational risks scheduling flexible job shop manufacturing systems. Journal of Cleaner Production, 209, 146-168.

Cucchiella, F., D'Adamo, I., Gastaldi, M., Koh, S. L., & Rosa, P. (2017). A comparison of environmental and energetic performance of European countries: A sustainability index. Renewable and Sustainable Energy Reviews, 78, 401-413.

D'amato, D., & Korhonen, J. (2021). Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecological Economics, 188, 107143.

Figge, F., Thorpe, A. S., Givry, P., Canning, L., & Franklin-Johnson, E. (2018). Longevity and circularity as indicators of eco-efficient resource use in the circular economy. Ecological economics, 150, 297-306.

Giannetti, B. F., Agostinho, F., Almeida, C. M., & Huisingh, D. (2015). A review of limitations of GDP and alternative indices to monitor human wellbeing and to manage eco-system functionality. Journal of cleaner production, 87, 11-25.

Gustafsson, M., Lindén, J., Åström, S., Sjöberg, K., & Tang, L. (2018). Quantification of population exposure to NO2, PM2. 5 and PM10 and estimated health impacts.

Hegab, H. A., Darras, B., & Kishawy, H. A. (2018). Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170, 694-703.

https://ec.europa.eu/eurostat/documents/1798247/6874172/Documentation+of+the+EU+RME+mod el/

Husgafvel, R., Pajunen, N., Virtanen, K., Paavola, I. L., Päällysaho, M., Inkinen, V., ... & Ekroos, A. (2015). Social sustainability performance indicators–experiences from process industry. International Journal of Sustainable Engineering, 8(1), 14-25.

Jander, W., & Grundmann, P. (2019). Monitoring the transition towards a bioeconomy: A general framework and a specific indicator. Journal of Cleaner Production, 236, 117564.

Jungbluth N, Frischknecht R (2010) Cumulative energy demand. In: Hischier R, Weidema B (eds) Implementation of life cycle impact assessment methods. Ecoinvent centre, St Gallen, pp. 33–40

Karvonen, J., Halder, P., Kangas, J., & Leskinen, P. (2017). Indicators and tools for assessing sustainability impacts of the forest bioeconomy. Forest ecosystems, 4(1), 1-20.

Karwowski, E., & Stockhammer, E. (2017). Financialisation in emerging economies: a systematic overview and comparison with Anglo-Saxon economies. Economic and Political Studies, 5(1), 60-86.

Kravchenko, M., Pigosso, D. C., & McAloone, T. C. (2019). Towards the ex-ante sustainability screening of circular economy initiatives in manufacturing companies: Consolidation of leading sustainability-related performance indicators. Journal of Cleaner Production, 241, 118318.

Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., & Zhang, H. (2021).

Mainardis, M., Magnolo, F., Ferrara, C., Vance, C., Misson, G., De Feo, G., ... & Goi, D. (2021). Alternative seagrass wrack management practices in the circular bioeconomy framework: A life cycle assessment approach. Science of the Total Environment, 798, 149283.

Manfredi, S., Allacker, K., Pelletier, N., Chomkhamsri, K., & de Souza, D. M. (2012). Product environmental footprint (PEF) guide

Moraga, G., Huysveld, S., De Meester, S., & Dewulf, J. (2021). Development of circularity indicators based on the in-use occupation of materials. Journal of Cleaner Production, 279, 123889.

Niero, M., & Kalbar, P. P. (2019). Coupling material circularity indicators and life cycle based indicators: A proposal to advance the assessment of circular economy strategies at the product level. Resources, Conservation and Recycling, 140, 305-312.

O'Neill, D. W., Fanning, A. L., Lamb, W. F., & Steinberger, J. K. (2018). A good life for all within planetary boundaries. *Nature sustainability*, *1*(2), 88-95.

Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short-term exposure to particulate matter (PM10 and PM2. 5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment international, 142, 105876.

Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104

Pillain, B., Viana, L. R., Lefeuvre, A., Jacquemin, L., & Sonnemann, G. (2019). Social life cycle assessment framework for evaluation of potential job creation with an application in the French carbon fiber aeronautical recycling sector. *The International Journal of Life Cycle Assessment, 24*, 1729-1742.

Popovic, T., Barbosa-Póvoa, A., Kraslawski, A., & Carvalho, A. (2018). Quantitative indicators for social sustainability assessment of supply chains. Journal of cleaner production, 180, 748-768.

Popp, J., Kovács, S., Oláh, J., Divéki, Z., & Balázs, E. (2021). Bioeconomy: Biomass and biomassbased energy supply and demand. New Biotechnology, 60, 76-84.

Regmi, M. B. (2020). Measuring sustainability of urban mobility: A pilot study of Asian cities. Case studies on transport policy, 8(4), 1224-1232.

Ronzon, T., Piotrowski, S., Tamosiunas, S., Dammer, L., Carus, M., & M'barek, R. (2020). Developments of economic growth and employment in bioeconomy sectors across the EU. Sustainability, 12(11), 4507.

Seidl, A., Mulungu, K., Arlaud, M., van den Heuvel, O., & Riva, M. (2021). The effectiveness of national biodiversity investments to protect the wealth of nature. Nature Ecology & Evolution, 5(4), 530-539.

Sheinbaum-Pardo, C., Ruiz-Mendoza, B. J., & Rodríguez-Padilla, V. (2012). Mexican energy policy and sustainability indicators. Energy Policy, 46, 278-283.

Skytt, T., Nielsen, S. N., & Jonsson, B. G. (2020). Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability–A case study of Jämtland, Sweden. *Ecological Indicators*, *110*, 105831.

Solarin, S. A. (2020). An environmental impact assessment of fossil fuel subsidies in emerging and developing economies. *Environmental Impact Assessment Review*, *85*, 106443.

Stadler, K., Wood, R., Bulavskaya, T., Södersten, C. J., Simas, M., Schmidt, S., ... & Tukker, A. (2021). EXIOBASE 3. Zenodo. Retrieved March, 22, 2023.

Sub-indicators: Recycling rate of total packaging waste.

Velasco-Muñoz, J. F., Mendoza, J. M. F., Aznar-Sánchez, J. A., & Gallego-Schmid, A. (2021). Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resources, Conservation and Recycling, 170, 105618.

Vieira MDM, Ponsioen TC, Goedkoop M, Huijbregts MAJ (2016a) Surplus ore potential as a scarcity indicator for resource extraction. J Indus Ecol. doi:10.1111/jiec.12444

Wang, Q., & Zhang, F. (2020). Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. Journal of Cleaner

Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metalsmethodology of calculation for pollution assessment (minireview). Environmental monitoring and assessment, 189(12), 616.

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21, 1218-1230.

Wolfslehner, B., Linser, S., Pülzl, H., Bastrup-Birk, A., Camia, A., & Marchetti, M. (2016). Forest bioeconomy–a new scope for sustainability indicators. From science to policy, 4.